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SUMMARY

The theory of elasticity has camouflaged a deficiency in the compatibility formulation since 1860. In structures

the ad hoc compatibility conditions through virtual "cuts" and closing "gaps" are not parallel to the strain formula-

tion in elasticity. This deficiency in the compatibility conditions has prevented the development of a direct stress

determination method in structures and in elasticity. We have addressed this deficiency and attempted to unify the

theory of compatibility. This work has led to the development of the integrated force method for structures and the

completed Beltrami-Michell formulation for elasticity. The improved accuracy observed in the solution of numerical

examples by the integrated force method can be attributed to the compliance of the compatibility conditions. Using

the compatibility conditions allows mapping of variables and facile movement among different structural analysis

formulations. This paper reviews and illustrates the requirement of compatibility in structures and in elasticity. It

also describes the generation of the conditions and quantifies the benefits of their use. The traditional analysis

methods and available solutions (which have been obtained bypassing the missed conditions) should be verified for

compliance of the compatibility conditions.
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INTRODUCTION

The equilibrium equations and the compatibility conditions required for the analysis of stress in an elastic con-
tinuum were formulated by Cauchy and Saint-Venant during the first and third quarters of the nineteenth century,

respectively. Cauchy's stress formulation was complete, with field equations and boundary conditions. Saint-Venant

formulated the field equations in 1860 but did not provide the compatibility conditions on the boundary. Traditional

compatibility theory in structures has been developed through the concept of redundant forces, with virtual "cuts"

and subsequent closing of the "gaps." In elasticity the field equations generated through Saint-Venant's strain for-

mulation are not parallel to the concept of cuts and closed gaps in structures. The compatibility formulation differed

in elasticity and in structures. In other words, compatibility theory has concealed a weak spot since the strain formu-

lation in 1860. The deficiency has prevented the development of a direct structural analysis method, even though the

origin of the science can be traced back to the cantilever experiment of Galileo, conducted four centuries ago (ref. 1)

If compatibility is not required (as in the analysis of determinate structures), the method of forces represents the
most efficient formulation. This method heretofore could not be extended to the analysis of indeterminate structures

because of the weakness in compatibility theory. The compatibility barrier blocked the natural growth of the

method, causing it to split into the stiffness method and the redundant force method as depicted in Fig. 1. The stiff-

ness method has made magnificent progress, but the ad hoc redundant force formulation has disappeared for all

practical purposes because of its limited scope (refs. 2 and 3).
Our research has attempted to extend the method of forces to the analysis of indeterminate structures. The basic

concept of the method is expressed in the following symbolic equation (devised through discussions with Richard H.

Gallagher):

I Equilibrium equation ]{Stress}=I Mechanicalload 1Compatibility condition [ I_n'/
(1)

For stress analysis the equilibrium equation (EE) represents the necessary condition. Sufficiency is achieved through

the compatibility conditions (CC). Even though a method corresponding to equation ( I ) could not be developed,
such a formulation was envisioned by Michell and is described by Love (ref. 4) in the following quotation:

It is possible by taking account of these relations [compatibility conditions] to obtain a complete

system of equations [eq. ( 1)] which must be satisfied by stress components, and thus the way is

open for a direct determination of stress without the intermediate steps of forming and solving

differential equations to determine the components of displacements.

At the turn of the twentieth century Beltrami and Michell attempted to formulate a direct method in elasticity

with stress {o} as the unknown, referred to as the Beltrami-Michell formulation (BMF). Its field equation (L {o} =

{ P} ), was obtained by coupling the EE and the CC. The BMF had limited scope because the compatibility condi-

tions on the boundary were not treated. For discrete structural analysis a method that can be considered parallel to

the BMF with internal force {F} as the unknown and the governing equation ([S][F}) = {P} was not available

during the formative 1960's.
We have addressed and attempted to unify compatibility theory in elasticity and in structures. In elasticity the

compatibility conditions on the boundary have been identified (refs. 5 and 6). In structures our compatibility condi-

tions are analogous to the strain formulation (ref. 7). Coupling the compatibility conditions to the equilibrium equa-

tions has led to the formulation of the integrated force method (IFM, ref. 8) for finite element structural analysis and

the completed Beltrami-Michell formulation (CBMF) in elasticity (ref. 6). Both IFM and CBMF are versatile formu-

lations applicable to static and dynamic analysis of linear and nonlinear structures. These methods and other analysis
formulations are summarized in Table I. The IFM equations can be specialized to obtain the stiffness method (refs. 9

and 10) and the classical force method (ref. 11). Through the IFM matrices the hybrid and total formulations can be

defined. The variational functional of the integrated force method can be specialized to obtain the functionals of the

other methods given in Table I. The IFM equations allow free movement from stress to displacement and vice versa.

This paper is an invited paper in the International Journal of Numerical Methods in Engineering commemorat-

ing Richard H. Gallagher (1927-1997), who was a co-contributor to the theory of the integrated force method

(refs. 7, 8, and 12). The paper reviews and illustrates the requirement of compatibility in structures and in elasticity.
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ItdiscussestheroleofcompatibilityinstructuresbyconsideringNavier'stableproblemasanexample.It alsoillus-
tratesthenecessityoftheboundarycompatibilityconditionsinelasticitythroughtheanalysisofacompositeplate.
Wegeneratedthethree-dimensionalcompatibilityconditionsontheboundaryfromthestationaryconditionsofthe
IFMvariationalfunctional.Wealsoquantifiedthebenefitsfromtheiruseinstructuralanalysisbysolvingthree
examples.Thepaperiscompletedwithdiscussionsandconclusions.

REQUIREMENT OF COMPATIBILITY CONDITIONS

A direct determination of the six stress components requires six equations--three equilibrium equations and

three compatibility conditions. However, indirect methods can be obtained by transforming stress into displacement

or scalar function, The indirect methods emphasize either equilibrium equations or compatibility conditions. How-

ever, confirming the accuracy of the response generated by the direct or indirect methods requires satisfying the EE

and the CC. Likewise, analysis of indeterminate structures requires both equilibrium and compatibility. The require-

ment of compatibility is illustrated by considering both Navier's table problem for structures and a composite circu-

lar plate in elasticity.

Navier's Table Problem

Navier attempted to determine the four reactions (R l, R 2. R 3, and R 4) along the legs of the table shown in Fig. 2.
The symmetrical table is made of wood, rests on a level stone floor, and is subjected to a load P with eccentricities

ex and ev. The table height is (, and the distances between the legs along the x and v directions are 2a and 2b, respec-
tively. Young's modulus of the table leg material is E, and its cross-sectional area is A. The table top is considered

rigid.

The IFM solution for the four reactions is obtained by augmenting Navier's three equilibrium equations with

one compatibility condition:

i1i17[,t a a -a -a| R2 -eyP

1 -1 1 -lJ g 4

(2)

Solving the IFM equation yields the four reactions as follows:

R2 p/l+,:,.-,,, p 1

R4 Ll-,:,.+,!,.
I[_.= r5 =0

where (v = eJa and rv= ey/b. Each leg carries one-quarter of the load when it has no eccentricity (t[_,= rv = 0.0).
Three displacement components are backcalculated as

[W]

0,--4- ff
01

a a a

1 1 1

b b b

-1

/'t1 R2

a R3

1 R4

b

(3)

(4)
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If thetablehadthreelegs,itsthreereactionscouldhavebeencalculatedfromthethreeequilibriumequations.Its
fourthlegrequiresanadditionalcompatibilitycondition.The IFM through its compatibility formulation provides the

fourth equation in the matrix (see eq. (2)).

Instead of developing the compatibility condition Navier rewrote the three equilibrium equations in terms of the

displacements (w, 0x, and 0v) to obtain the three stiffness equations. Solution yielded the three displacements, from
which the tbur reactions could be backcalculated. Generalization of this procedure, which is credited to Navier.

became the popular stiffness method (refs. 13 and 14).

In the redundant force method one leg of the table was "cut" to obtain a three-legged determinate table. This

determinate problem was solved for reactions and displacement AP at the cut. The solution process was repeated for

a load R. called a redundant force, in place of the reaction for the leg that had been cut. The resulting displacement

ARat the cut was obtained. Because the physical table had no real cut, the gap was closed (AP + A;_= 0). yielding

the value of the redundant reaction. Solving the determinate structure subjected to both the redundant reaction and

the external load provided the result for the indeterminate problem. The generalization of this procedure became the

redundant force method (refs. 2.3. and 15).

Composite Circular Plate

The compatibility requirement in elasticity is illustrated through the example of a composite circular plate as

shown in Fig. 3. The structure is made of an aluminum inner plate (I) of radius a = 6 in. and a steel outer sector (II)

of radius b = 12 in. The inner plate (I) is subjected to a uniformly distributed load of intensity q = 100 psi, whereas

the outer plate (II) is uniformly heated with a temperature differential of At = 50 °F. The thicknesses of the inner and
outer plates are h I = 0.2 in. and h1I = 0.15 in., Young's moduli are E 1= 10.6xl06 and E it = 30.Ox106 psi, Poisson's

ratios are vI= 0.33 and VII = 0.3, respectively, the coefficient of expansion of the outer plate is _xt.

In the completed Beltrami-Michell formulation the moments M r and M, are considered as the unknowns. The
plate has one field equilibrium equation and one compatibility condition as ]eollows:

d2 (rM,.)---_ + rq = 0
dr 2 at"

(5)

(6)

where the plate rigidity is defined as K = Eh3/[ 12(1 - v2)]. Solving the composite problem requires solving the two

field equations for the six boundary conditions. One boundary compatibility condition occurs at the clamped bound-

ary (r = b):

(7)

Three boundary conditions occur at the interface (r = a):

M,'=M/' (8a)

(8b)

(8c)
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wherethesuperscriptsI andII refertothetwoplatesectorsattheinterface.Attheorigin(r =0)

1 I
Moments are finite: (M_p,M r) (8d)

Solving the field equations yields moments for the inner plate as follows:

I (l_v / 1 vl)q,. 2 (9a)M,((r)=-r--- S-BI+lcl(l+vl)logr+2 _ C1 )+ DI-I(3+

---+ -_ I Dl

Likewise. solving for the outer plate with no distributed load gives

-' +¼ ½r2 +2 "

,.1( ) 1( t2'-=-----_+ C2 l+v 11 logr- C2 l-v H + D 2 (lOb)
F"

The six constants (Bp B 2. C z, C2, D 1, and D 2) are determined from the six boundary conditions. Substituting the
numerical values for the parameters yields the following moment solutions:

For the inner plate (0 < r < a)

For the outer plate (a < r < b)

M/(r) = 844.05 - 20.81, .2

M_(r) = 844.05 - 12.44r 2

M/1 (r)= 2046.63-(5203.06/, "2)- 1170 Iog r

Mll(r) = 2676.63 + (5203.06/,'2)-1170 log r

The displacement, if required, is obtained by integrating the deformation displacement relations. Calculating the

integration for the constraints required using the kinematic boundary equations (refs. 16 and 17). The transverse
displacements lbr the plate are as follows (ref. 16):

For the inner plate (0 < r _<a)

w ! (r) = 3.1209 - 0.0356r 2 + 0. 1757 x 10 -3 r 4

For the outer plate (a < r < b)

wll(r) = 5.3614 - 0.1344r 2 - 0.7296 log r + 0.04417r 2 log r

(1 la)

(! lb)

(llc)

(1 ld)

(12a)

(12b)
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TheCBMFrequiredtheboundarycompatibilityconditionsgivenbyequations(7)and(8c).Becausethesecondi-
tionswerenotavailable,theCBMFcouldnotbedevelopedearlier.TheCBMFcanbetransformedtoobtain
Navier'sdisplacementmethod(ref.18).

GENERATION OF COMPATIBILITY CONDITIONS

Strain, or deformation balance, represents the physical concept behind the compatibility conditions, which are

controller type of relations. In elasticity the strains e are controlled, f(E x, e_...... yz_.)= 0; or in structures the defor-

mations 13are balanced, f([3 I. [32..... [3,1)= 0. The compatibility conditions are generated here first for elasticity and
then for structures.

Generation of Compatibility Conditions in Elasticity

The field compatibility conditions can be derived by eliminating the displacements from the strain displacement

relations (ref. 19). This technique has not yet been successfully extended to deriving the boundary compatibility

conditions (BCC). At present the BCC have been generated from the stationary condition of the IFM variational

functional. This functional its has three terms: A, B, and W. For three-dimensional elasticity its has the following

explicit form:

its = A + B- W (13)

Term A represents the internal energy expressed in terms of stresses and displacements.

a. a,,, (a. (a,, (a,,_y _v ,+ _z --+ ZaT,/-- +--/+ Tv./-- +--/+ +

volunle " "

(14a)

Term B represents the complementary energy. This term, expressed in terms of strain and stress function, has the

following form:

= f_ 13xB +

volume

(14b)

Term W represents the potential of the work done due to the prescribed traction, displacement, and specified body
force:

surface Sa surface S-, volume

(14c)

where ox,0 v, 0 z, z._.., "ey:, and "t:x are the six stress components ex, e v, e:. Y.rr"Yy:' and Y.-xare the six strain compo-

nents u, v. and w are the three displacement components; _i' _°2' and (1)3are the three stress functions Px-, P,., P- are

the three prescribed tractions; Pv Pv, and P_ are reactions where displacements u. I', and _ are prescribed; and

B x, B v, B_ are the three body forcecomponents. The stress functions are defined as

NASA/TM-- 1999-209175 7



22 02_1 _2_ a2_2 _2_1_x= + _2 __.= ...7...5_+ - __ --az- ax e ax 2 av 2

a2q)3 a2q01 a2(p2

"_.r,'= axar "ty_ = ayaz %: = azax

(15)

The selection of stress functions and their derivation from the field equations are given in reference 20. The station-

ary condition of rts with respect to displacements u. v, and w and stress functions Cpl, _P2,and _P3 yields all the equa-
tions of the completed Beltrami-Michell formulation. The set includes the known elasticity equations (three

equilibrium equations and three compatibility conditions in the field; three boundary, equilibrium, or traction condi-

tions: and three displacement continuity conditions on the boundary) available in standard textbooks (ref. 19). The

stationary condition also yields the three additional boundary compatibility conditions. These conditions obtained in

terms of strains, when expressed in terms of stresses for an isotropic material, are as follows:

fl-_-[ar_(o v vo,.) a -roy) a,=
az t -_ ....

+.:, }+{ i'+ }=o (16)

-_v{a,.y(_x-vo,.-vG:.)-a,.x(l+v}'c__3.}+__{avx(Cy-VlJz- V_x)- aw(1 + v)T.,3.} = 0

where Ga-, a_a.,and av: are the direction cosines of the outward normal vector to the boundary surface. The three
BCC given b_,,equation (16), missed since 1860, have been derived for the first time for a three-dimensional elastic

continuum. These conditions, when added to the Beltrami-Michell formulation, complete the method of stress in

elasticity. CBMF solutions for plates and cylindrical shells are reported in references 6 and 16.

Compatibility Conditions for Finite Element Structural Analysis

The compatibility conditions for finite element analysis are obtained as an extension of Saint-Venant's strain

formulation in elasticity. The two steps of strain formulation are

1. Formulation of the strain displacement relations

2. Elimination of the displacements to obtain the compatibility conditions

For an illustration of the strain formulation consider the plane stress problem with its strain displacement relations:

0u by au by
c_. = a---_7 e.v = ax--"7 Yx> : _ + _ (17a)

The field CC are obtained by eliminating the displacements:

a2e_. a-e_. a-Y.w
- +

av e ax 2 axav
=0 (17b)

For discrete structures the deformation displacement relations (DDR) are equivalent to the strain displacement rela-

tions in elasticity. The DDR can be obtained by using the equality relation between internal strain energy and exter-
nal work (ref. 7) as follows:
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where [B] is the m x n rectangular equilibrium matrix of the EE. [BI{F} = {P}; {]3} is the n-component deformauon

vector: and {X} and {P} are m-component displacement and load vectors, respectively. The DDR contain r= n - m

constraints on deformations, which represent the r compatibility conditions. The CC are obtained by eliminating the

m displacements from the n DDR as follows (ref. 8):

[C]{_}={0} (19)

The deformation {_} of structures is analogous to strain in elasticity. The rectangular and banded compatibility
matrix [C] of dimension r × n, has a full-row rank of r. It is independent of sizing design parameters (such as the

area of the bars and the moments of inertia of the beams), material properties, and external loads (ref. 7).

Compliance of Compatibility Conditions

Compliance of the compatibility in the finite element stiffness method is illustrated by considering the example

(a2E, a2c' a27.'_ /

of a plane stress elasticity problem. The field compatibility condition /_ + ax 2 axa,. - 0), when expressed

in terms of continuous displacement variables u and v produces a trivial condition (or an identity {flu.v) -flu,v) = 0}.

The field compliance is well recognized in the stiffness method. The boundary compatibility condition

expressed in terms of strains has the following form:

a a _±[. a a ]a,.x-_xey+a,y-_yeX 2L vx axg.,y+ao.-_vr._ , =0 (20a)

When expressed in terms of continuous displacements u and v the boundary compatibility condition becomes a non-
trivial function as follows:

[o42v l(c32v cq2u/] + Fa2u 1(c32u _12v /]

_ = avxL'_-7-_y 2/_---_2+ axa,.)J "':L_ 2 t_--_-.2+ _)xo4y)]_:°
(20b)

The boundary compatibility condition expressed in terms of the displacement is not automatically satisfied. Consider

a simple finite element model with a four-node rectangular element and a three-node triangular element, as shown in

Fig. 4. Along the interface connecting nodes 2 and 4 the compliance of the boundary compatibility can be imposed

by the following residue function:

]._interface : t-,_rectangularelement + t-_triangular element : 0

Consider displacement functions for the rectangular and triangular membrane elements (ref. 21 ) as follows:

For a rectangular element

(21)

"ectangularu(x, y) = ClX + c2xY+ c3Y + C4 (22)

Likewise the rectangularv(x,y) can be written. The eight constants (c 1, c2 ..... %) can be linked to the eight nodal dis-

placements of the rectangular element.

NASA/TM--1999-209175 9



Foratriangularelement

triangulm'u(x,y) = dlX + d2Y + d3 (23)

Likewise the triangularv(x,y) can be written. The six constants (d I, d 2 ..... d6) can be linked to the six nodal displace-

ments of the triangular element.
The contribution to the residue function _ for each of the two elements can be obtained as follows:

]_element-rectangular-(2-4) = 0.5{avxC 6 + avi,c2 } (24)

_element-triangulm'-(2-4) = 0 (25)

Thus. the boundary compliance (_rectangular element + ]._triangularelement :_ 0) at the interface of the finite element

model shown in Fig. 4 is not satisfied.

In the finite element analysis the traditional assumption that the stiffness method satisfies the compatibility con-

dition a priori needs to be reviewed with respect to compliance of the boundary compatibility conditions. In the stiff-

ness method continuity is imposed on the nodal displacements (such as. for example, at nodes 2 and 4 in Fig. 4). The

displacement continuity condition can not be sufficient for the compliance of the boundary compatibility condition

in the interface (generated by nodes 2 and 4 in Fig. 4).

BENEFITS FROM COMPATIBILITY CONDITIONS

In this paper we discuss the benefits gained from using the compatibility conditions in finite element analysis.

Similar benefits in continuum analysis (refs. 16, 17, and 22), design optimization, and structural testing are

described in references 12, 23, and 24. To quantify the benefit, we have developed a research-level finite element

code entitled IFM/Analyzers. This code provides for three analysis methods: integrated force method, dual inte-

grated force method, and stiffness method. The IFM and IFMD equations, programmed in IFM/Analyzers code, are
summarized next.

Equations of Integrated Force Method for Static Analysis

The IFM equations for a finite element model with n force and m displacement unknowns are obtained by cou-

pling the m equilibrium equations ([B]{F} = {P}) to the r= n - m compatibility conditions ([C][G] {F} = {SR}):

{ } = or [S]{F} = {P*}
(26)

From the internal forces {F} the displacements {X} are backcalculated as

(27)

where [J] = m rows of {[S] q }r

In equations (26 and 27) [B] is the m x n rectangular equilibrium matrix, [G] is the n x i1flexibility matrix, [C]

is the r x ii compatibility matrix, {SR} = -[C]{13 °} is the r-component effective initial deformation vector, {[3°} is

the initial deformation vector of dimension n, [S] is the IFM governing matrix, and [J] is the m x n deformation

coefficient matrix. The IFM matrices and vectors are generated in references 25 and 26.

NASA/TM--1999-209175 10



Equations of Dual Integrated Force Method for Static Analysis

A dual formulation of the primal IFM has been developed. The dual integrated force method has been obtained

by mapping forces into displacements at the element level. Like the IFM the dual method has two sets of equations.

The primary set is used to calculate the displacements. Forces are backcalculated from the secondary set of equa-

tions. IFM and IFMD are analytically equivalent--producing identical solutions for stress, displacement, frequency.

and buckling load. The IFMD governing equations are

[K] WD{X} = (P} w D (28)
IIIXIll m×l #ltX[

{F} : [G] -I[B] T {X} - [G] -t {[3} 0 (29)

where

[K] FMD: [B][G]

The IFMD primary equations and the stiffness method equations appear to be similar, but the coefficients of the

stiffness matrix and that of the dual matrix [K]IFMD differ in magnitude (ref. 10).

Numerical Examples

The numerical examples presented use three elements of the IFM/Analyzers code: (1) a quadrilateral membrane

element, QUAD0405; (2) a hexagonal solid element, HEX2090; and (3) a plate flexure element, PLB0409. The gen-

eration of the elemental equilibrium matrix [B e] in 1FM uses both the force and displacement fields, even though the

final equation is expressed in terms of elemental forces ([Be]{F e} = {p e}). The role of the displacement field in [Be]

resembles the concept of virtual displacement. The generation of the elemental matrices uses numerical integration

but does not use reduced integration or bubble function techniques. In the numerical examples the performance of

the simple IFM elements is compared with that of the popular stiffness elements. The basic attributes of the IFM
elements are

1. QUAD0405: This is a four-node element with two displacements (u and v) and three stresses (Cy.r,O"v, and

z.rv). The element has eight displacement degrees of freedom. Five force unknowns represent the discretizafion of the

thi-ee stresses (c x, _v, and _r,')" Normal stresses _. and a v vary linearly while the shear stress z_3. is constant.
2. HEX2090: This is a 20-node element with three displacements (u, v, and w) and six stresses (_x, _v, _:, "txv,

_:_=,and "_y:).Displacements are discretized to obtain 60 degrees of freedom. All six stress components are repre-
sented by 90 force unknowns.

3. PLB0409: This is a four-node plate bending element with transverse displacement w and three moments (M_.,

M v, and M_.). The displacement is discretized to obtain 12 degrees of freedom. All three moments are represented
b3; nine force unknowns.

Numerical example 1: cantilever beam modeled by membrane elements.--The cantilever beam shown in
Fig. 5(a) is 24 in. long, 2 in. deep, and 0.25 in. thick. It is made of steel with Young's modulus of 30x106 psi and

Poisson's ratio of 0.30 and is subjected to 200-1b load at its free end. The beam was modeled with the QUAD0405

element of IFM/Analyzers and the CQUAD4 element of a popular commercial code. The stiffness elements
(CQUAD4 of the commercial code and QUAD0405 of IFM/Analyzers) supported the linear stress field along the
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beamdepth.Thus,onlydiscretizationalongthebeamlengthwasconsidered,which,however,isthestandard
practiceforcomparison(ref.27).Thesolutionforthetipdisplacementnormalizedwithrespecttomaterialstrength
isdepictedinFig.5(b).Theerrorinthedisplacementforafour-elementmodelobtainedbyIFM/Analyzerswas
I.1percentversus10percentforthecommercialcode.Foraneight-elementmodeltheerrorwasreducedtozeroby
IFM.Theconvergedcommercialcodesolutionexhibitedanerrorofabout9percentevenforadensemodelwith
48elements.Forthisexampleaconvergedsolutionbythecommercialstiffnesscodewasfoundtobeincorrect.

Numerical example 2: cantilever beam modeled by solid elements.--The cantilever beam shown in Fig. 6(a) is

12 in. long, I in. deep. and 1 in. thick. It is made of steel with Young's modulus of 30×106 psi and Poisson's ratio of
0.30 and is subjected to 10-1b load at its free end. The beam was modeled with hexahedral elements. For IFM/

Analyzers the HEX2090 element was used. A 20-node CHEXA element was used for the commercial code. The

displacement, frequency, and stress solutions for different finite element models are given in Figs. 6(b) and (c). The

maximum displacement and fundamental frequency generated by IFM and the commercial code converged at about

the same rate. Difficulty was encountered for stress convergence. The stress patterns generated by IFM and the stiff-

ness method looked similar. However, against a 720-psi beam solution, IFM converged to 630 psi, but the stiffness

method could produce only 356 psi for a six-element model.

Numerical example 3: a plate flexure problem.--A rectangular clamped plate, shown in Fig. 7(a), subjected to

a concentrated load of 1000 lb, was solved by using the PLB0409 element of IFM/Analyzers and by the CQUAD4

element of a commercial code. The plate is made of steel with Young's modulus of 30× 106 psi and Poisson's ratio

of 0.30. Its dimensions (a, b, and thickness t, see Fig. 7) are 24, 12, and 0.25 in., respectively. Results normalized

with respect to Timoshenko's solutions (ref. 18) are depicted in Figs. 7(b) and (c). The central displacement ob-

tained by IFM achieved an accuracy of 98.7 percent for a model with eight elements. For a coarser model with only
four elements the error was about 17.5 percent. The solution obtained by the commercial code required 64 elements

to achieve an accuracy of 98 percent. The performance of a second commercial code followed the pattern of the first

code with some variation. For the bending moment convergence occurred with the PLB0409 element, using a model

with four elements per quarter plate. For a model with one element per quarter plate the IFM solution exhibited a 20

percent error. For the commercial code the bending moment exhibited an error of about 7 percent even for a fine
model with 16 elements per quarter plate.

For the three examples the integrated force method outperformed the stiffness method, overshadowing the sim-
plicity at the element level.

DISCUSSION

The discussion is separated into the completeness of the theory, the quality of analytical predictions, and the
near-term research.

Completeness of Theory.

The theory of structures began before the birth of Newton in the notebooks of Leonardo da Vinci and through

Galileo Galilei's studies on structures (ref. 1). The growth accelerated during the nineteenth century as the eminent

scientists and engineers Cauchy. Navier. Saint-Venant, Castigliano, and others worked on different applications (see

Fig. 8). It was commonly believed that all fundamental concepts of this four-century-old science were fully under-

stood before the turn of the twentieth century. This belief was not correct. The traditional theory of compatibility
camouflaged a deficiency described in this paper.

If the compatibility conditions were not required, the theory of (determinate) structures could be covered in a

few undergraduate courses. Satisfying the compatibility conditions makes the theory a research topic practiced at

doctoral and postdoctoral levels around the world. Here we digress to speculate on the possible reasons for the tardy
incorporation of the compatibility conditions into the theory of structures.

The compatibility conditions are more complex relationships than the equilibrium equations. However, it is not

likely that their complexity would have been an insurmountable obstacle for Cauchy, Saint-Venant, Navier, or
Maxwell (see Fig. 8).
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Complacencycouldbeanotherpossiblereason,butobservedinconsistenciesbetweendifferentapproachesto
thesolutionofindeterminateproblemssuggestthatthiscouldnothavebeentheprimaryreason.Forexample,dis-
placementsaretheunknownsinthedisplacementmethod,butredundants,insteadofforces,becametheunknowns
inthetraditionalforcemethod.Also,thedisplacementmethodcouldsolveallthreetypesofboundaryvalueprob-
lemsinelasticity,buttheBeltrami-Michellformulationcouldhandleonlystressboundaryvalueproblems.The
redundantforcemethodinstructuresdidnotparalleltheBeltrami-Michellformulationinelasticity.Evennovice
researcherswouldsurelyhavenoticedandquestionedthelackofunifomfitybetweenthemethodsinelasticityand
structures.

Oftenanapproximatesolutionwasadequatetofulfill theneedofanindustrythatmayhavehadlittleinterestin
theparticularmethodused.Take,forexample,thebuildingandbridgeindustries,whichrequireanalysisofindeter-
minatetrusses,continuousbeams+frames,andotherstructures.Theredundantforcemethodsolvedsuchproblems.
Forplatesandshellssolutionsobtainedthroughthesuperpositiontechniqueservedtheindustrywell.Solvingengi-
neeringproblemsnotonlybecamecentraltotheworkbutalsooccupiedmostoftheavailabletimeofcompetent
researchers,leavinglittleornotimeforthemtoponderoraddressthedeficienciesandcompletionofthetheoryof
compatibility.Theengineeringproblem-solvingaspectofstructuralmechanicswasconsideredtobethemostimpor-
tant.Thedividendsassociatedwithsolvingindustrialproblemsare,inouropinion,theprimaryreasonbehindthe
slowprogressofthecompatibilityconditions.Complexityandcomplacencymaybeconsideredbutsecondary
reasons.

It is importanttoevaluatethecompletenessof the theory of structures as a science, as opposed to merely solv-

ing industrial problems. The current acceptance of the stiffness solution by industry should not lead to neglect of the

discipline, which may have entered a developmental plateau. Research on compatibility can reinvigorate the struc-

tures discipline and eventually provide a robust alternative formulation for solving industrial structures problems.

Quality of Analytical Prediction

The quality of analytical predictions can be directly controlled by imposing the requirement that the equilibrium

equations and the compatibility conditions be simultaneously satisfied. The discretization error can be reduced

through mesh refinement. The integrated force method adopts this approach and produces accurate solutions even
when the structure is modeled with a modest size of finite element mesh. Even though emphasis on and clever

manipulation of one of the two equation sets may appear to be adequate for the analysis of some problems, the reli-

ability of the solution thus obtained cannot always be guaranteed. For example, the monotonically converged stiff-

ness solution in Fig. 5 was erroneous.
Consider next a deficiency observed by Thodhunter (ref. 28) while he was scrutinizing Astronomer Royal

Airy's attempt to analyze the stress in cantilever and simply supported beams. Airy formulated a potential function

to satisfy the equilibrium equations. He manipulated the equilibrium equations and the boundary conditions to gen-
erate the solution for the examples. However, his results were incorrect because he neglected the compatibility com-

pliance. Thodhunter (ref. 28) describes the situation:

Important Addition and Correction. The solution of the problems suggested in the last two Articles

were given--as has already been stated--on the authority of a paper by the late Astronomer

Royal, published in a report of the British Association. I now observe, however--when the print-

ing of the articles and engraving of the Figures is already completed--that they cannot be accepted

as true solutions, inasmuch as they do not satisfy the general equations (164) of § 303 [note that

the equations in question are the compatibility conditions]. It is perhaps as well that they should be

preserved as a warning to the students against the insidious and comparatively rare error of choos-

ing a solution which satisfies completely all the boundary conditions, without satisfying the funda-
mental condition of strain [note that the condition in question is the compatibility condition], and

which is therefore of course not a solution at all.

The advice of Thodhunter should be followed to generate solutions by simultaneously satisfying all the equilibrium

equations and all the compatibility conditions.
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Near-Term Research

Equilibrium and compatibility constilute the two fundamental equations of the theory of structures, as depicted

in the two halves of the pie diagram in Fig. 9. The immaturity in the compatibility conditions is represented by the

shaded quarter. The theory of structures has been developed by using the information contained in three-quarters of

the pie diagram. Using the additional quarter should improve the theory and the performance of the analysis meth-

ods. Near-term research should address at least two issues: unification of the theory, and compliance of the boundary

compatibility conditions.

Unif'wation oftheory.--Using the compatibility conditions can lead to the unification of the theory of struc-

tures, allowing free movement between different analysis variables as well as the various methods of structural

analysis. In discrete element analysis we can move from displacement to stress through a set of algebraic equations

and vice versa. Likewise we should be able to move from force method to displacement method. For example, we

can move from the integrated force method to the dual integrated force method, both methods yielding identical

solutions. Even though the IFM and IFMD produce identical solutions, each method has unique attributes. The pri-

mal IFM is more suited to design optimization because this method generates closed-form sensitivities for stress,

displacement, and frequency constraints (ref. 12). An analytical initial design to begin optimization iteration can be

obtained by IFM (ref. 29). Singularity in optimization and behavior of constraints are elegantly treated by IFM

(refs. 30 to 32). The dual IFMD is not as suitable as the primal IFM for design calculations. The governing matrix

of IFMD is symmetrical. Therefore, IFMD can use solvers that have been obtained for the stiffness method. This

approach should be extended for continuum analysis, reducing any barrier between elasticity and structures. For

example, the force method concept should be consistent between structures and elasticity (like the integrated force

method and the completed Beltrami-Michell formulation).

Satisfaction of boundary compatibility conditions.--The traditional solutions and other analysis methods must

be checked for the compliance of the boundary compatibility conditions. Compliance of the BCC at the element

interface in the stiffness-method-based finite element analysis should be reviewed. The stiffness elements, if neces-

sary. should be modified for the compliance of the BCC.

CONCLUSIONS

The theory of structures has concealed a deficiency that has been present in the compatibility conditions since

Saint-Venant's strain formulation in 1860. We have researched and addressed these important conditions in struc-
tures and elasticity.

Because of the compatibility deficiency the direct methods (integrated force method in structures and completed

Beltrami-Michell formulation in elasticity) that bestow simultaneous emphasis on stress equilibrium and strain com-

patibility were not available during the formative 1960's. Despite the deficiency structural analysis has made mag-
nificent progress through the stiffness method. However, in academia research into the stiffness method has entered

a developmental plateau. Bringing back the method of forces can reinvigorate the discipline and provide a robust
alternative formulation for solving industrial structural problems.

We can more precisely quantify the accuracy of predictions by comparing the force and stiffness method solu-

tions and balance the monopoly that is currently biased toward the stiffness method. The new methods can bring

value-added benefits in structural analysis, structural design, and structural testing.
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TABLE I.--METHODS OF STRUCTURAL MECHANICS AND ASSOCIATED VARIATIONAL
FUNCTIONALS

Method

number Elasticity,'
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3

4 Hybrid method
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Integrated force
method
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Displacement
Stress and

displacement
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displacement

Total formulation Washizu method

Force and deflection

IFM variational

functional

Complementary
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and deflection
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m
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ompatibility_J {F} =

I
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(popular to extent of monopoly)

t-
O

Yes

t"

Integrated force method

e-
o

Yes
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I--

Redundant force method

;1_'o (disappeared)

Figure 1.inCompatibility barrier to extending force method for indeterminate structures.
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Figure 2.wlFM solution to Navier's table problem. (a) Indeterminate table problem. (b) Average displacement
along z-axis. (c) Average tilt about x-axis. (d) Average tilt about y-axis.
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Figure 3,--Composite circular plate subjected to uniform load q and

temperature differential At. (a) Side view of plate. (b) Planform of plate,
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Figure 4.--Boundary compatibility compliance for
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Figure 5.--Numerical example 1: Analysis of cantilever beam. (al) Geometry and boundary
conditions. (a2) Finite element model. (b) Convergence of cantilever beam tip displacement.

NASA/TM--1999-209175 19



(a) P

Model Normalized

displacement

IFM/ Commercial
IFMD code

2xlx1 0.802 0.790
3xlx1 .956 .949

4xlx1 .985 .979
5xlxl .993 .988
6xlx1 .996 .991
7xlx1 .997 .993
7x2x2 .995 .995

7x4x4 .997 .996

(b)

Frequency

IFM/ Commercial
IFMD code

1.198 1.182
1.037 1.032

1.012 1.008
1.005 1.000
1.003 1.000
1.002 .999
1.001 1.001

1.001 1.010

-_Neutral plane

(cl)

Neu_alplane

(c2)
CD-97-75822

Figure 6.--Numerical example 2: Stress analysis of cantilever beam. (a) Geometry.
(b) Displacement and frequency solution. (c) Stress solution. (cl) IFM/IFMD: stress,
629.7 psi. (c2) Commercial code: stress, 355.9 psi.
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Figure 7.--Numerical example 3: Analysis of clamped

plate. (a) Geometry. (b) Convergence of displacement.
(c) Convergence of stress. (d) Finite element models.
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